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In this paper we present the coefficients of several sixth-order 
symplectic integrators of the type developed by Ft. Ruth. To get these 
results we fully exploit the connection with Lie groups. These 
integrators, as well as all the explicit integrators of Ruth, may be used 
in any equation where some sort of Lie bracket is preserved. In fact, if 
the Lie operator governing the equation of motion is separable into two 
solvable parts, the Ruth integrators can be used. 0 1992Academic PWSS, hc. 

1. INTRODUCTION 

The purpose of this article is to provide a sixth-order 
explicit canonical integrator for Lie groups. Originally Ruth 
proposed a method to integrate the motion of a particle in 
Hamiltonians of the type [ 1.1 

H= 4~) + v(x), (1) 

where x and p are the canonically conjugate positions and 
momenta. Ruth was able to find a fourth-order integrator 
by solving eight very complicated equations numerically. 
Later, he found an analytic solution to the equations. This 
work remained unpublished and was known mostly in the 
accelerator community. Only the general method and a 
third-order integrator had been published [2]. 

Independently, Candy and Rozmus [3] rederived the 
fourth-order integrator of Ruth using the method proposed 
by Ruth. They cleaned up Ruth’s approach substantially 
and obtained eight equations of a simpler appearance. 

In the mean time, Neri and Forest [4] showed that 
the explicit integrator of Ruth has a greater realm of 
applicability than Ruth had realized. In fact, it could be used 
in any Lie group! In addition, the connection between Lie 
groups and Ruth’s integrator provided an even simpler 
derivation of Ruth’s fourth-order integrator. Forest was 
able to reduce Ruth’s or Candy’s eight equations to two 
simple equations easily reduceable to a single cubic 
equation [S]. 

In this paper, we will exploit the simplicity of the Lie 
“connection” to set up eight equations for the sixth-order 
explicit integrator. In Section 2, we review the connection 
with Lie groups and, in Section 3, the type of Hamiltonians 
suitable to Ruth’s method. In Section 4, we introduce the 
idea of symmetrization. In Section 5, we derive a basis for 
the space of four-fold commutators which are needed in a 
sixth-order integrator. Using this we produce a numerical 
solution for the integrator. It should be said that an analyti- 
cal solution probably does not exist because the equations 
are quintic. Finally, in Section 6, we discuss some very 
recent results’ and derive some special purpose integrators 
for Hamiltonians of the form p2/2 + V(x). 

2. REVIEW OF THE LIE CONNECTION 

It can be shown that Hamilton’s equations generate sym- 
plectic maps. The equation for the map has a form similar 
to Schriidinger’s equation for the unitary transformation in 
quantum mechanics [6], 

-$M=M:-H(z,; t):, (2) 

where :g(z,): is the Lie operator associated to the function 
g(zO). The operator :g(z,): is defined in terms of the Poisson 
bracket: 

ag af ag af =-.---.- 
ax, ah ah ax,' (3) 

Here z0 = (x,, pO) is a point in the initial phase space. From 
the nature of Eq. (2), one can see that M, just like :-H:, 
operates on functions of zO. It propagates them forward in 
time according to the Hamiltonian H(z,; t). 

Because the time dependence can be removed formally by 
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extending phase space, we will concentrate on time 
independent Hamiltonians [7]. For such systems, one can 
write a formal solution for M, 

M = exp(: - tH(z,):), (4) 

where M propagates any function for a time t. 
In theory, we can get the position of the ray z, at time r 

by using Eq. (4): 

z, = exp(: - tH(z,):) z0 

(5) 

If we could sum up the series (5) to machine precision on a 
computer, it would be a symplectic integrator automati- 
cally, because it is the exact solution. Unfortunately, this is 
not always possible. However, if we look back at Eq. (1 ), we 
find that if the Hamiltonian has either the form A(p) or 
V(x), it is exactly solvable: 

z,=exp(:-tV(x,):)z, 

= x0, PO-t-& Vxo) 
( 0 > 

z, = exp(: - tA(p,):) z. 

= 
( 

xo+f-&A(Pci),Po . 
0 > 

(ha) 

(6b) 

This leads us to the Lie group generalization of Ruth’s 
integrator. We review it in the next section. 

3. THE TWO-MAPS INTEGRATOR 

Consider a Hamiltonian H which can be split into two 
pieces H, and H, such that 

z,=Mi(t) zo=exp(:-tH;(z,):) z,; for i= 1,2, (7) 

are known functions which can be evaluated to machine 
precision on a computer. This is the case of the Hamiltonian 
of Eq. (1) as we just pointed out in Section 2. 

Now let us try to approximate the original map M(t) by 
a product involving the two maps M, and M, : 

M(t)~M(t;k)= fi M,(t’j)M,(t2j) (8) 
j=l 

DEFINITION. A map is a symmetrized product of 
operators if the sequence of factors is the same when read 
from left to right or from right to left. 

by assumption, all the factors of M( t; k) are exactly solvable LEMMA. Symmetrized products do not have odd-fold 
on a computer; hence the approximate map M(t; k) is commutators when written as the exponential of a single 
symplectic. The fundamental question has two parts: operator C. 

(i) Can we select the set (j= 1, Nl tii, f2.i} such that 
IIM(t)-M(t; k)ll =O+O(?+‘)? 

(ii) What is the minimal value of N (denoted NJ which 
will allow us to obtain a kth-order integrator (i.e., 
IIM(t)-M(t;k)ll =O+O(?+‘))? 

Central to the answer of this question is the Campbell- 
Baker-Hausdorff theorem (CBH). According to the CBH 
theorem, Eq. (8) can be rewritten formally as 

M(t;k) = fi M,(tii) M2(t2,) = exp(C) 
,=I 

C= i 5 t’,:-H,(zo): 
i=l J=l 

+multiple commutators of :H,: and :H,:. 

The exact solution requires 

C= --(:H,: + :H,:). 

This gives us a prescription for a first-order integrator: 

N 

if 1 ti,=t then 
j=l 

C= -t(:H,:+:H,:)+ ... +o(t*). (11) 

We see immediately 
is just 1. Therefore 
integrator is given by 

from (11) that the minimum N, 
the simplest first-order canonical 

M(t;k=l)=exp(-t:H,:)exp(-t:H,:). (12) 

This simple integrator involves only the integrated sums in 
Eq. (11). 

The quadratic integrator will involve double com- 
mutators. In general, because the exact solution for C does 
not contain any commutators, the kth integrator will 
require us to set all j-fold commutators from j= k - 1 to 
j= 1 to zero. 

4. SYMMETRIZED INTEGRATOR 

To proceed further we need to find a basis for the multiple 
commutators of two arbitrary operators. With the help of a 
simple lemma, we will restrict ourselves to (k - 1 )-fold com- 
mutators where k is odd (i.e., commutators of k operators). 
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Proof: We start by writing M as a symmetrized product 
involving an ordering parameter E: 

M = fi exp(sA,) h exp(sA,) =exp(C(s)). (13) 
j= I j=N 

Here the A,‘s are some arbitrary operators. To prove the 
lemma, we compute the inverse of M: 

Mpl = 
i 
jel exp(sAj) h exp(rAi)}P1 

f=N 

= ,Ii& expird,)}p’ { N ex 8 

1 

jvl P( 4}-’ 

=ffil ev(-&A,) Ii exP(-EAj). (14) 
,=N 

In Eq. (14), we obtain the inverses by reversing the ordering 
and using the well-known property 

exp(Aj)-l = exp( -Ai). (15) 

We notice from the last line in (14) that M(E))’ = 
M( -E) = exp( C( - 6)). However, property ( 15) implies that 
M(E) ~ ’ = exp( - C(E)). These two equations force the 
relation 

C(--E)= -C(a)-Cisoddins 

* C contains only even-fold commutators. 

(16) 

This proves the lemma. 

A simple application of the lemma is to use the first-order 
integrator of Eq. (12) to produce a second-order integrator 
by symmetrization: 

M(t;k=2)=exp( -i:H,:) 

xexp(-r:H,:)exp(-i:H,:). (17) 

M( t; k = 2) still obeys Eq. (9b) and is symmetrized thereby 
being truly quadratic. 

5. A BASIS FOR THE TWO-FOLD 
AND FOUR-FOLD COMMUTATORS 

Consider k arbitrary operators A,; let us select one 
operator amongst them and without loss of generality we 
denote it by A,. Then it can be shown that any sum Ck of 

581/W/2-3 

(k - 1)-fold commutators of the operators A, can be 
expressed in terms of a class of “nested” commutators: 

(k-l)! 

ck= 1 “TI,{~JX ,,,, 7iAq,z, 
,=l 

“‘{A,,,-,,,Ak}}}‘..}}}} (18a) 

xj = thejth permutation of the 

(k - 1) integers between 1 and k - 1. (18b) 

Assuming totally arbitrary operators, Eq. (18) tells us that 
we need (k- l)! commutators to form a basis for the 
(k - 1)-fold commutators. The proof of (18) is rather 
complex [ 81. 

Equation (18) alone depicts a pretty gloomy prospect 
since it would imply that a sixth-order symmetrized 
integrator requires the zeroing of 26 commutators 
( = 2! + 4!). This is not so because in our case the operators 
Ais are not independent. Indeed, they are proportional to 
the two operators 3, : and :H,:. This entails that many of 
the nests in (18) vanish or are related to one another. 
Table I gives the results for two-fold and four-fold com- 
mutators. 

The results of Table I were found by brute force expan- 
sion of the nests involved. Notice that one half of Table I is 
obtainable from the other by symmetry. This table tells us 
that in addition to relation (1 l), a symmetrized ansatz for 
M(t; 6) will require at least eight free variables unless a 
hidden symmetry permits the accidental cancellation of 
more than one commutator at once (see Section 6). Here is 
our ansatz: 

M(t; 6) = M,(+ t’, - t’, - t’, - t’,) 

~M~(~t-t*,-t~~-t*~-~t*~) 

xM,(t’,) M20*1) M10’2) 

xM2(f22) M,(t’,) Mz(t’,) 

x M,(t’d M2(t24) 

x M,(t’,) M2(t23) Ml(t’,) 

xM20*2) M,(t’,) W(t2,) M,(f’,) 

x M,(+t - t*, - t*, - t*, - it*,) 

xM,(+t’, -tLZ-fL3-P4). (19) 

TABLE I 

Basis for the Even-fold Commutators of the Integrator 

k Commutators with an excess of H, Exchangmg H, and ff, 

3 {:H,:, {:H,:,:H,:)} (:H>:. {:H2:.:H,:}} 

{:H,:, i:H,:> {:H,:, {:H,:, :H>:})}} (:H2:, {:H,:, (:H2:, (:H2:, :H,:}}}) 

5 (:H,:, (:H,:, (:Hz:r {:H,:, :Hz:}}}} {:H2:, (:H2:, (:H,:, (:H>:, :H,:}))) 

(:f’s:r (:H,:, (:H,:, (:H,:,:H,:}}}; (:H,:, (:HZ:, (:H2:, {:ffZ:,:H,:}}]} 
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This ansatz can be motivated by the following arguments: These results were checked on a simple one-dimensional 

(i) We need eight free parameters, these are the nonlinear Hamiltonian and are probably accurate to at 

{j= 1,41t',, t3}. least 14 digits. 

(ii) It must be symmetrized, hence, with the exception 
of M2( t2,), all operators appear twice. 

(iii) The operators M,(it - t’, - t’, - t’, - t’,) and 
M, (it - t2, - t2, - t2 3 - $t2,) are added to make sure that 
equation (11) is satisfied (i.e., the time step adds up 
correctly). 

It would appear that a manipulator using the CBH formula 
would be needed to rewrite (19) in the form exp(C). Instead, 
we will solve the equation 

6. DO WE REALLY NEED EIGHT 
FREE PARAMETERS? 

In this paper, we did not derived the Lie exponent C of 
Eq. (9a). In the mean time Yoshida, in a very elegant paper, 
using Lie methods and the CBH formula, has found three 
integrators requiring only six parameters (t’, = 0 and 
t2,=0) and an eight-order integrator [lo]. The author 
checked the results and obtained a few extra digits. Here are 
the results for completeness: 

M(t;6)-exp(-t(:H,:+:H2:))=O+O(t7). (20) t’,/t = 5.1004341191845769875214540809d -01 

On both sides we collect the coefficients of operators which 
are chosen so as to originate from the different commutators 
of Table I. Table II provides a possible choice. In Eq. (20), 
the coefficients of the operators of Table II are horrible 
polynomials in the set of variables (j= 1,41 tlj, t2j}. 
A program was written with the help of the differential 
algebra package of Berz [9] to evaluate these polynomials 
and their derivatives. A Monte Carlo procedure was used to 
locate the neighborhood of a solution. Finally, we zoomed 
in on the solution using a Newton search for extra digits. 
This is important to ensure that the error introduced by the 
integrator is truly scaling with the sixth power of the time 
step. The results are: 

t2,/t = 2.3557321335935813368479318398d -01 

t’,lt = -4.7105338540975643663081124856d -01 

t2,/t = - 1.1776799841788710069464156784d + 00 
(22a) 

t’,/t = 6.8753168252520105968917024092d -02 

t2Jt = 6.5759316034195560944212486296d -01 

t’,/t = 7.2205442492378755356329149452d - 01 

t2,/t = 4.2606818707920161960837141906d - 03 

t 1 2/t = - 1.0640122700653297522549548262d + 00 

t2,/t = -2.1322852220014515207059933597d + 00 
Wb) 

t’,/t = 1.24490030378348 10-l 

t2,/t = - 1.08371593275947 

t’,/t = 1.2203376115315065322641369108d - 01 

t2,/t = 1.1881763721538764135794103684d + 00 

t’,/t = -3.97593681977505 10-l 

t2,/t=2.88528568804383 10-l 

t’,/t = 4.79518377447967 10-l 

t2,/t = 6.70508186091578 10-l 

t’,/t= -3.72762722606859 10-l 

t2,/t = - 1.41603363130538. 

t’, Jt = -3.4812637695304568885170257470d - 01 

t2,/t = -2.1440353163053893106013017942d + 00 
(21) 

t’,/t = - 1.0712532270105700201745169525d +00 

t2Jt = 1.5288622842492702522672398850d - 03 

t’Jt = 1.1954883227639667425772711946d + 00 

t2,/t = 1.1947238916218421074511378969d + 00. 

c=) 

TABLE II 

Operators Selected for the Computation of the Integrator 

In addition, it is possible to find special purpose 
integrators. For example, often the Hamiltonian has the 
form: 

k Operators with an excess of H, Exchanging H, and H, 
H= p2/2 + V(x). (23) 

3 :H,: :H, : :H, : :H,: :H,: :Hz: 
We immediatly notice that the following bracket 

:H, : :H, : :H, : :H, : :H,: :H,: :H,: :H,: :H,: :H, : vanishes: 
5 :H,: :HI : :H, : :H, : :H2: :H, : :H,: :H,: :H,: :H,: 

:H, : :H,: :H, : :H,: :H, : :HZ: :H, : :H,: :H, : :H,: 
CVX), CVX), P2/211 =o. (24) 
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This implies that two commutators of Table II will vanish. minimum while still preserving the topological properties 
Hence, we can look again for a six-parameter integrator. We that can be observed on a short time. Then the integrator is 
have two choices: we can choose H, = p2/2 or H, = ~~12. . / “let loose” for a large number of revolutions, usually past 
Here are a few possible integrators: with H, = p2/2, 

t’,/t= -5.9787161671957402310062480135d-01 

t2,/t = 1.3118241020105280620317994547d - 01 

t’,/t = 5.8852906496064437853106590874d -01 

t2,/t = 9.2161977504885189292236718431d -01 

t’,/t = -4.3479137012319658965284391839d-01 

t2, Jt = L3493788593566820172653845235d - 01 

the domain of validity rigorously dictated by a study of 
error propagation. This must be done in systems where 
subtle but generic effects develop over a long time. These 
effects are often washed away by small violation of the 
symplectic character of the motion [ 111. 

This is not necessarily the case in other fields. Indeed, 
Yoshida and others in celestial mechanics, remain very 
interested in high order integrators because they do more 
than just modeling. They are interested in the exact solution 
of the problem. 

or 

t’,/t = 5.1791946639339185940085409119d-01 

t2,/t = 1.8278954099977372117069849639d - 01 

t’,/t = - 1.3267962573034493229817144023d + 00 

t2,/t = 8.6271011462916532736887174315d -04 

t’,/t =‘9.0898136623593114773776409548d -01 

t2,/t = - 5.8620514553048773604918857756d - 01; 

with H, = p2/2, 

t’ I /t = 6.8066885891286351628397783263d - 01 

t2Jt = 3.5575742591019929246735084209d - 01 

t’,/t = 2.2423572053517480818109584204d -01 

t2, Jt = -2.2142129962300619509303322260d - 01 

t’,/t = -4.8823791278137165779840700761d - 01 

t2,/t = - 3.5537213269939876300551390868d - 02. 

CONCLUSION 
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